Bayesian Network Induction With Incomplete Private Data

نویسندگان

  • Justin Zhijun Zhan
  • LiWu Chang
  • Stan Matwin
چکیده

A Bayesian network is a graphical model for representing probabilistic relationships among a set of variables. It is an important model for business analysis. Bayesian network learning methods have been applied to business analysis where data privacy is not considered. However, how to learn a Bayesian network over private data presents a much greater challenge. In this paper, we develop an approach to tackle the problem of Bayesian network induction on private data which may contain missing values. The basic idea of our proposed approach is that we combine randomization technique with Expectation Maximization (EM) algorithm. The purpose of using randomization is to disguise the raw data. EM algorithm is applied for missing values in the private data set. We also present a method to conduct Bayesian network construction, which is one of data mining computations, from the disguised data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Bayesian Nash Equilibria in Two-player Games with Correlated Private Signals

This paper studies a 2×2 static game of incomplete information. I allow players’ private signals to be correlated, which adds complexity to Bayesian Nash Equilibrium (BNE) solutions of the game. Further, the econometric structure of this model is “incomplete” (Tamer, 2003). I therefore focus on a nontrivial subset, Π2(θ0), of the support of public information variables where a unique Monotone S...

متن کامل

Bayesian Network Structural Learning and Incomplete Data

The Bayesian network formalism is becoming increasingly popular in many areas such as decision aid, diagnosis and complex systems control, in particular thanks to its inference capabilities, evenwhen data are incomplete. Besides, estimating the parameters of a fixed-structure Bayesian network is easy. However, very few methods are capable of using incomplete cases as a base to determine the str...

متن کامل

Utilitarian Cooperation under Incomplete Information∗

A theory of cooperative choice under incomplete information is developed in which agents possess private information at the time of contracting. It is assumed that the group of cooperating agents has agreed on a utilitarian “standard of fairness” (group preference ordering) governing choices under complete information. The task is to extend this standard to choices whose consequences depend on ...

متن کامل

No-Regret Learning in Repeated Bayesian Games

Recent price-of-anarchy analyses of games of complete information suggest that coarse correlated equilibria, which characterize outcomes resulting from no-regret learning dynamics, have near-optimal welfare. This work provides two main technical results that lift this conclusion to games of incomplete information, a.k.a., Bayesian games. First, near-optimal welfare in Bayesian games follows dir...

متن کامل

No-Regret Learning in Bayesian Games

Recent price-of-anarchy analyses of games of complete information suggest that coarse correlated equilibria, which characterize outcomes resulting from no-regret learning dynamics, have near-optimal welfare. This work provides two main technical results that lift this conclusion to games of incomplete information, a.k.a., Bayesian games. First, near-optimal welfare in Bayesian games follows dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004